Increased progression to kidney fibrosis after erythropoietin is used as a treatment for acute kidney injury.
نویسندگان
چکیده
Treatment of renal ischemia-reperfusion (IR) injury with recombinant human erythropoietin (rhEPO) reduces acute kidney injury and improves function. We aimed to investigate whether progression to chronic kidney disease associated with acute injury was also reduced by rhEPO treatment, using in vivo and in vitro models. Rats were subjected to bilateral 40-min renal ischemia, and kidneys were studied at 4, 7, and 28 days postreperfusion for renal function, tubular injury and repair, inflammation, and fibrosis. Acute injury was modulated using rhEPO (1,000 or 5,000 IU/kg, intraperitoneally) at the time of reperfusion. Renal tubular epithelial cells or fibroblasts in culture were subjected to hypoxia or oxidative stress, with or without rhEPO (200 IU/ml), and fibrogenesis was studied. The results of the in vivo model confirmed functional and structural improvement with rhEPO at 4 days post-IR (P < 0.05). At 7 days post-IR, fibrosis and myofibroblast stimulation were increased with IR with and without rhEPO (P < 0.01). However, at 28 days post-IR, renal fibrosis and myofibroblast numbers were significantly greater with IR plus rhEPO (P < 0.01) compared with IR only. Mechanistically, rhEPO stimulated profibrotic transforming growth factor-β, oxidative stress (marker 8-hydroxy-deoxyguanosine), and phosphorylation of the signal transduction protein extracellular signal-regulated kinase. In vitro, rhEPO protected tubular epithelium from apoptosis but stimulated epithelial-to-mesenchymal transition and also protected and activated fibroblasts, particularly with oxidative stress. In summary, although rhEPO was protective of renal function and structure in acute kidney injury, the supraphysiological dose needed for renoprotection contributed to fibrogenesis and stimulated chronic kidney disease in the long term.
منابع مشابه
Acute Kidney Injury, Myocardial Infarction and Death Following Brake Fluid Poisoning; A Case Report
Background: Ethylene glycol is a toxic alcohol which is used in brake fluid, antifreeze, coolants, preservatives and chemical solvents. Ethylene glycol poisoning usually results in depression of the central nervous system, renal insufficiency and cardiopulmonary compromise, while laboratory findings include metabolic acidosis, increased anion gap, increased osmolar gap and calcium oxalate cryst...
متن کاملHuman CD133+ Renal Progenitor Cells Induce Erythropoietin Production and Limit Fibrosis After Acute Tubular Injury
Persistent alterations of the renal tissue due to maladaptive repair characterize the outcome of acute kidney injury (AKI), despite a clinical recovery. Acute damage may also limit the renal production of erythropoietin, with impairment of the hemopoietic response to ischemia and possible lack of its reno-protective action. We aimed to evaluate the effect of a cell therapy using human CD133+ re...
متن کاملRenal Cell Protection of Erythropoietin beyond Correcting The Anemia in Chronic Kidney Disease Patients
Currently many patients with chronic renal failure have profited from the use of erythropoietin to correct anemia (1,2). In chronic kidney disease, anemia is believed to be a surrogate index for tissue hypoxia that continues preexisting renal tissue injury (1-3). Erythropoietin is an essential glycoprotein that accelerates red blood cell maturation from erythroid progenitors and facilitates ery...
متن کاملIncreased Risk of Kidney Disorders in Patients with Coronavirus 2019: A Letter to the Editor
Background and Objectives: Coronavirus 2019 (Covid-19) has become a global disease that can affect various organs of the human body. Kidney disorders are the most common disorders in patients with Covid-19. Kidney involvement manifests as proteinuria and acute kidney injury (AKI). This virus can cause acute tubular necrosis, protein leakage in the Bowman's capsule, glomerulopathy, and mitochond...
متن کاملThe Preventive Role of Pioglitazone in Glycerol-Induced Acute Kidney Injury in Rats during Two Different Treatment Periods
Background: Acute kidney injury is the most life-threatening complication of rhabdomyolysis. Glycerol is commonly used to induce this injury. The aim was to investigate the renoprotective effects of pioglitazone and the possible advantage of administering the drug for a longer period.Methods: Twenty-four male Albino Wistar rats were randomly divided into 4 groups (n=6/group): (A) control, (B) g...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Renal physiology
دوره 306 6 شماره
صفحات -
تاریخ انتشار 2014